Introduction and Motivation

- Fuel cells are a rapidly developing alternative energy technology that address the emerging issues of current fossil fuels
- Reverse hydrogen fuel cells can be used to address issues of energy storage of intermittent source (solar, wind, etc.) and provide clean burning hydrogen gas fuels
- The oxygen evolution reaction or OER (the pair reaction of the hydrogen evolution reactions) suffers from an overpotential, which is related to energy lost in the conversion process from a source to fuel
- Perovskite replacements for the cathode of the fuel cell, typically made of rare, expensive elements, can reduce the cost and reduce the overpotential of the OER
- SrTiO$_3$ is a promising candidate for this application and can be engineered to further reduce the overpotential

Results and Conclusions

- A lower overpotential for the OER than SrTiO$_3$ alone was achieved via substitutional doping with cobalt a spectator site
- Changes in surface hydration were also observed due to the effect of surface dopants

Future Work

- Analysis of effect of changing hydration states on overpotential
- Study other transition metal dopants to determine potential trend of overpotential reduction
- Experimental testing of designed materials

Methods

- Density Functional Theory (DFT) calculations of SrTiO$_3$ structures were carried out for the four step OER mechanism using the Quantum Espresso software package
- Surfaces of SrTiO$_3$ were substitutionally doped at spectator sites (see figure 4)

The undoped surface

- The change in Gibbs free energy of each step of the OER mechanism was calculated according to the following formulas:
 \[\Delta G \downarrow ox = \Delta E \downarrow DFT - T \Delta S + \Delta ZPE \]
 \[\Delta G \downarrow ox = \Delta G^\circ \downarrow SHE + \Delta G^\circ \downarrow ox - n \cdot e \cdot U - n \cdot 0.0592 \cdot p^\circ \]

 Where ΔE_{DFT} is the change in energy of the structures and species involved, ΔS is the change in entropy, and ΔZPE is the change in zero point energy. The applied potential and pH of OER conditions are applied by the second equation.

- The overpotential of the steps were analyzed for the original SrTiO$_3$ structure and the Ni and Co doped structures.
- Due to the differing oxidation states of nickel and cobalt, different hydration states were determined and calculated
- Gibbs free energy analysis of altered hydration of doped sites determined the most stable forms of the doped structures
- Structures doped at spectator site 1 are most stable for transition metals without hydrated species for both cobalt and nickel
- Structures doped at spectator site 2 are most stable with an OH species for nickel and O for cobalt

Methods

- Experimental testing of designed materials

Figure 1: Intermittent nature of solar power, the power generation varies through the day, necessitating energy storage solutions (from Martinez-Anido et al.)

Figure 2: Volcano plot of perovskite material overpotentials for the OER, the overpotential is related to the descriptor on the x-axis (from Man et al.)

Figure 3: Surface Reconstruction of SrTiO$_3$ under OER conditions; Spectator and Participant sites denoted in yellow and orange, respectively

Figure 4: R1 structure of cobalt (blue) doped surface at (a) spectator site 1 and (b) spectator site 2

Figure 5: Doped structures were tested for potential changes in oxidation and hydration states due to different metals

Figure 6: Doped SrTiO$_3$ surfaces for catalysis of hydrogen fuel production

Doped SrTiO$_3$ Surfaces for Catalysis of Hydrogen Fuel Production

Vignesh C. Bhethanabotla¹, Robert B. Wexler¹, Andrew M. Rappe¹
University of Pennsylvania, Department of Chemistry

References